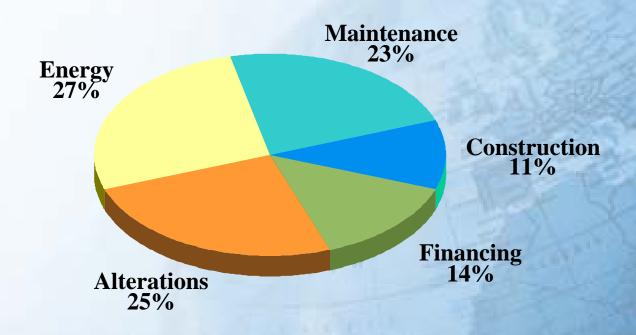


Maintaining & Optimizing Energy Efficiency in Automotive Test Labs

Joe Napieralski Johnson Controls - Detroit, MI joseph.r.napieralski@jci.com



Agenda

- Life Cycle Cost Analysis & Operational Cost Impact
- Developing Energy Efficient Operations & Maintenance Strategies
 - Process
 - Maintenance Perspective
 - Energy Perspective
- Summary

40 Year Life Cycle Costs - Typical Facility ASHRAE

The typical focus on reducing initial cost of construction and deferring maintenance ultimately causes building owners to pay too much for a lower quality facility environment in the long run.

What about Test Cells?

Construction

Financing

Maintenance

- CONSTRUCTION
- FINANCING
- ALTERATIONS
- MAINTENANCE
- ENERGY

Alterations

Understand the Process

- What Function does the Facility Serve?
- What is the current project at hand?
- What is the current operational status?
- What equipment, technology, and personnel is available?

Understand Process

Prioritize

Testing

Analysis of Information

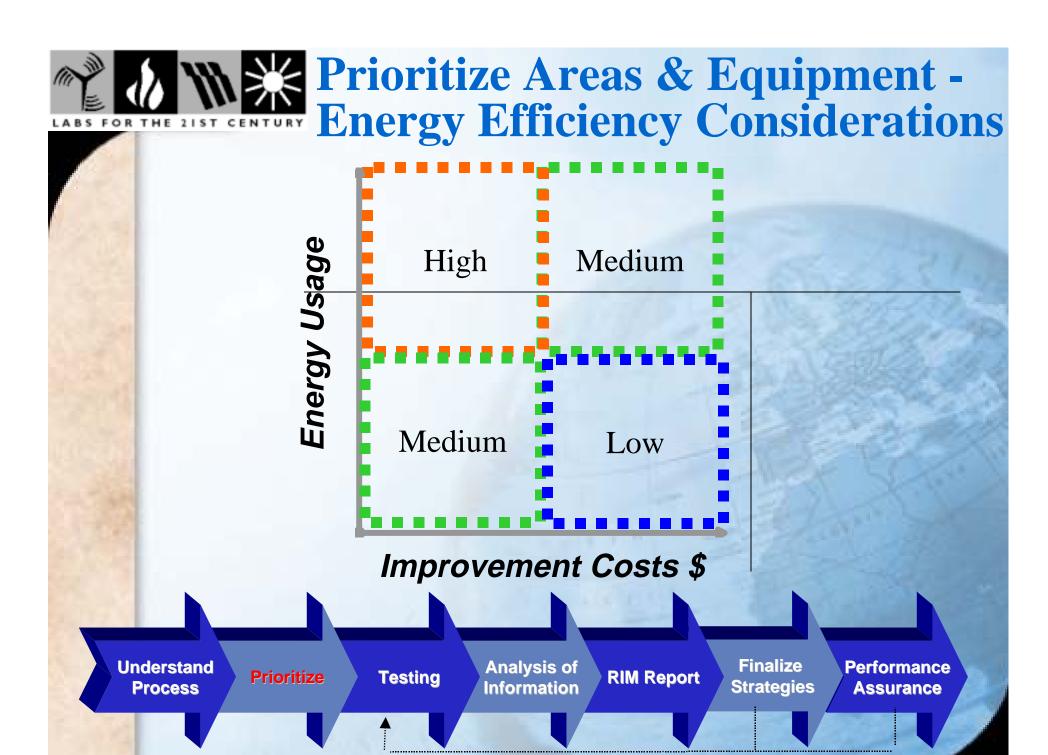
RIM Report

Finalize Strategies

Prioritize Areas & Equipment - Maintenance Considerations

Priority	High	Med	Low
Downtime	Mission	Mission	Not Mission
Risk	Critical Area	Critical Area	Critical Area
System	No Redundancy	Prorated	Total
Redundancy		Redundancy	Redundancy
Repair Risk	High Secondary Damage	Medium Secondary Damage	Low Secondary Damage

Understand Process


Prioritize

Testing

Analysis of Information

RIM Report

Finalize Strategies

Testing - Maintenance

- Vibration Signatures
- Infrared Thermal Imaging (IR)
- Fluid Sampling (compressor oil, hydraulic oil)
- Motor Current

Testing - Energy Efficiency

- Trending
- Data Collection
 - Utility Bills, Equipment Manufacturer Data, etc.

Understand Process

Prioritize

Testing

Analysis of Information

RIM Report

Finalize Strategies

RIM Report (Reliability Improvement Measures)

- Assessment of Existing Conditions
- Detailed Scope of Repairs and Recommendations
- Risk Assessments
- Suggested Enhancements/Upgrades
- Budget Costs (capital, expense)

Understand Process

Prioritize

Testing

Analysis of Information

RIM Report

Finalize Strategies

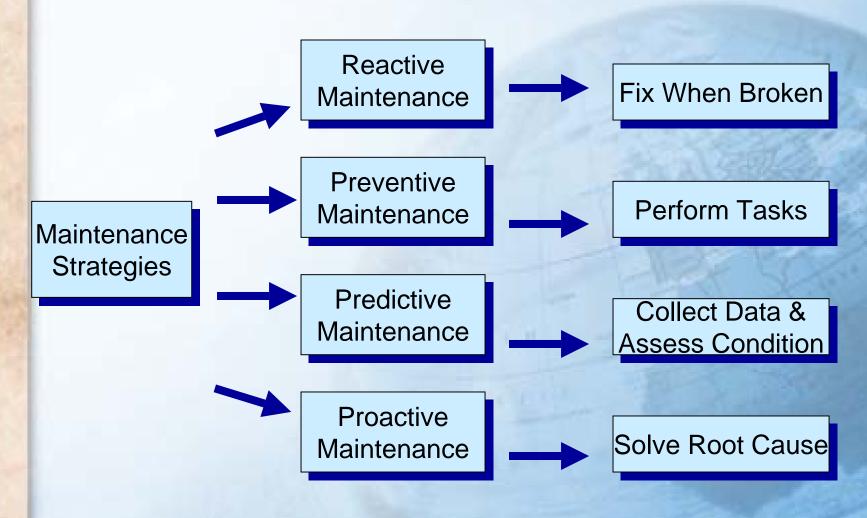
Finalize Strategies

- Match Areas & Equipment to Maintenance Level
 - Reactive
 - Preventive
 - Predictive/Proactive
- Add Appropriate Monitoring & Automation Technology
 - Based on Payback
- Develop Automated Schedules Based on Usage Trends
- Develop a Schedule for Frequency of Testing
- Evaluate Financial Justification
- Internal Training / Outsourcing

Understand Process

Prioritize

Testing


Analysis of Information

RIM Report

Finalize Strategies

Maintenance Strategies

HVAC Predictive Maintenance

Analysis	Detects	Cost Avoidance ++
Vibration	Mechanical Problems	\$20-40,000 Secondary Damage
Oil	Oil Condition & Component Wear	\$10,000 Premature Bearing Replacement
Motor Current	Motor Rotor	\$2-6,000 Growler Test
Meggar	Motor Insulation	\$10-20,000 Motor Burnt Out
Eddy Current Tuby	Condenser & Evaporator Tubes	\$24,000 Secondary Damage

++ Plus Downtime (often more than damage costs)

Performance Assurance

- Assign an Energy "Watch Dog"
- Monitor and Track Results
 - Make Necessary Adjustments
 - Identify Additional Energy Savings
- In-House vs. Outsourcing
 - Guaranteed Savings \$\$\$
 - JCI has over 700 contracts worth over \$2 Billion
 - JCI has less than 1% shortfall

Understand Process

Prioritize

Testing

Analysis of Information

RIM Report

Finalize Strategies

Benefits of Efficient O&M

- Reduces unscheduled downtime
- Reduces maintenance & operations costs
 - ENERGY COSTS
 - Emergencies, scheduled teardowns, secondary damage
 - Workload reduction (PM's), reactive maintenance
- Cost effective retrofit decisions
- Extends asset (equipment) life
- Optimal Equipment Operation = Energy Efficient

"Maintaining & Optimizing Energy Efficiency in Automotive Test Labs"

THANK YOU! HAVE A GREAT CONFERENCE

Joe Napieralski Johnson Controls - Detroit, MI joseph.r.napieralski@jci.com